Sample Python code to plot GEOS-Chem data¶
First we load some Python packages
[1]:
%matplotlib inline
import matplotlib.pyplot as plt
import numpy as np
import xarray as xr
import cartopy.crs as ccrs
np.seterr(invalid='ignore'); # disable a warning from matplotlib + cartopy
GEOS-Chem netCDF diagnostics¶
Show contents of the OutputDir folder of the GEOS-Chem run directory geosfp_4x5_standard. This is where netCDF output from GEOS_Chem will be sent.
[2]:
ls ~/tutorial/geosfp_4x5_standard/OutputDir/
GEOSChem.Restart.20160701_0020z.nc4 GEOSChem.SpeciesConc.20160701_0020z.nc4
Open a GEOS-Chem output file in netCDF format into an xarray Dataset. This is a data object format that is geared to storing data from netCDF files. Print the contents of the Dataset.
[3]:
ds = xr.open_dataset("~/tutorial/geosfp_4x5_standard/OutputDir/GEOSChem.SpeciesConc.20160701_0020z.nc4")
ds
[3]:
<xarray.Dataset>
Dimensions: (ilev: 73, lat: 46, lev: 72, lon: 72, time: 1)
Coordinates:
* time (time) datetime64[ns] 2016-07-01T00:20:00
* lev (lev) float64 0.9925 0.9775 0.9625 ... 2.635e-05 1.5e-05
* ilev (ilev) float64 1.0 0.985 0.97 0.955 ... 3.27e-05 2e-05 1e-05
* lat (lat) float64 -89.0 -86.0 -82.0 -78.0 ... 82.0 86.0 89.0
* lon (lon) float64 -180.0 -175.0 -170.0 ... 165.0 170.0 175.0
Data variables:
hyam (lev) float64 ...
hybm (lev) float64 ...
hyai (ilev) float64 ...
hybi (ilev) float64 ...
P0 float64 ...
AREA (lat, lon) float32 ...
SpeciesConc_O3 (time, lev, lat, lon) float32 ...
SpeciesConc_CO (time, lev, lat, lon) float32 ...
SpeciesConc_NO (time, lev, lat, lon) float32 ...
Attributes:
title: GEOS-Chem diagnostic collection: Species...
history:
format: CFIO
conventions: COARDS
ProdDateTime:
reference: www.geos-chem.org; wiki.geos-chem.org
contact: GEOS-Chem Support Team (geos-chem-suppor...
simulation_start_date_and_time: 2016-07-01 00:00:00z
simulation_end_date_and_time: 2016-07-01 00:20:00z
Make a quick plot of the Ozone species in the Dataset. You can play with the plot options.
[4]:
ax = plt.axes(projection=ccrs.PlateCarree())
ax.coastlines()
ds['SpeciesConc_O3'][0,0].plot(ax=ax)
plt.title('surface ozone');
GEOS-FP met field¶
We can also use the xarray package to load data from one of the met field files that are used to drive GEOS-Chem.
[5]:
ds_met = xr.open_dataset("~/ExtData/GEOS_4x5/GEOS_FP/2016/07/GEOSFP.20160701.I3.4x5.nc")
ds_met
[5]:
<xarray.Dataset>
Dimensions: (lat: 46, lev: 72, lon: 72, time: 8)
Coordinates:
* time (time) datetime64[ns] 2016-07-01 ... 2016-07-01T21:00:00
* lev (lev) float32 1.0 2.0 3.0 4.0 5.0 6.0 ... 68.0 69.0 70.0 71.0 72.0
* lat (lat) float32 -90.0 -86.0 -82.0 -78.0 -74.0 ... 78.0 82.0 86.0 90.0
* lon (lon) float32 -180.0 -175.0 -170.0 -165.0 ... 165.0 170.0 175.0
Data variables:
PS (time, lat, lon) float32 ...
PV (time, lev, lat, lon) float32 ...
QV (time, lev, lat, lon) float32 ...
T (time, lev, lat, lon) float32 ...
Attributes:
Title: GEOS-FP instantaneous 3-hour parameters (I3), proc...
Contact: GEOS-Chem Support Team (geos-chem-support@as.harva...
References: www.geos-chem.org; wiki.geos-chem.org
Filename: GEOSFP.20160701.I3.4x5.nc
History: File generated on: 2016/08/04 09:56:57 GMT-0300
ProductionDateTime: File generated on: 2016/08/04 09:56:57 GMT-0300
ModificationDateTime: File generated on: 2016/08/04 09:56:57 GMT-0300
Format: NetCDF-4
SpatialCoverage: global
Conventions: COARDS
Version: GEOS-FP
Model: GEOS-5
Nlayers: 72
Start_Date: 20160701
Start_Time: 00:00:00.0
End_Date: 20160701
End_Time: 23:59:59.99999
Delta_Time: 030000
Delta_Lon: 5
Delta_Lat: 4
[ ]: